
 Introduction to APIs

1

Lesson Objectives

After this lesson, you will be able to…

Describe what an application programming interface (API) is and why we might use one.
Identify common APIs on the web.
Call an API.

2

Discussion: Web Magic

Have you seen…

A website with Google Maps on the page (like Yelp)?
A program that had live stock market info?
A website that isn’t Twitter but shows a live Twitter feed?
Any app that pulls info from somewhere else?

How did they do this?

3

APIs (Application Program Interfaces)

An API is a service that provides raw data for public use.

APIs give us data, maps, anything!

What’s the API? Sample URL — put this in a new tab!
http://swapi.co/api/people/3
http://dev.markitondemand.com/Api/Quote/xml?symbol=AAPL
https://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b6907d289e10d714a6e88b30761fae22

Do you think you’ve been on websites that call an API?

The Star Wars API: Request R2-D2 info
Markit Digital’s API: Request current Apple stock info
OpenWeatherMap: The current weather in London

Does the JSON look unreadable in the browser? If you’re using Chrome, install the .JSONView plugin

4

http://swapi.co/api/people/3
http://dev.markitondemand.com/Api/Quote/xml?symbol=AAPL
https://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b6907d289e10d714a6e88b30761fae22
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc?hl=en

How Do We Use an API?

We’ll use the requestsrequests module.

This works, but there’s one very helpful line missing!

Before we see this in action, let’s look at what the API might return.

importimport requests requests

Call the # Call the APIAPI by opening the by opening the URLURL and reading the data and reading the data..

We use the # We use the `get()``get()` functionfunction inin `requests``requests`..

response response == requests requests..getget(("<API URL HERE>""<API URL HERE>"))

printprint((responseresponse))

Prints out the requested information# Prints out the requested information!!

5

JSON vs. XML

Imagine: You write code for a list.

But then, my_listmy_list is unexpectedly a dictionary, or an int, or even a class! The code we wrote won’t work.

APIs can give data back in two ways: JSON or XML. Depending on what the API does, we need to write our
program a different way.

my_list my_list == [[11,, 44,, 22]]

my_listmy_list..appendappend((lenlen((my_listmy_list))))

my_listmy_list[[11]] == "new element!""new element!"

forfor item item inin my_list my_list::

 print item print item

6

How Do APIs Give Us Info? Option 1: JSON

Here’s a potential return from an API:

Looks like a dictionary with a list of dictionaries inside it, right?

But it’s not a dictionary! It’s JSON (JavaScript Object Notation).

The requestsrequests module has a to turn JSON into a Python dictionary.

We can decode JSON with decoded_data decoded_data == response_from_request response_from_request..jsonjson(()).

{{

 "users""users":: [[

 {{"name""name":: "Wonder Woman""Wonder Woman",, "id""id":: 00}},,

 {{"name""name":: "Black Panther""Black Panther",, "id""id":: 11}},,

 {{"name""name":: "Batgirl""Batgirl",, "id""id":: 22}}

]]

}}

built-in JSON decoder

7

http://docs.python-requests.org/en/master/user/quickstart/#json-response-content

How Do APIs Give Us Info? Option 2: XML

Instead of JSON, we might get XML:

JSON is certainly easier to read!

We’ll stick with JSON whenever we can.

<<usersusers>>

 <<user iduser id=="0""0">>

 <<namename>>Wonder WomanWonder Woman<<//namename>>

 <<//useruser>>

 <<user iduser id=="1""1">>

 <<namename>>Black PantherBlack Panther<<//namename>>

 <<//useruser>>

 <<user iduser id=="2""2">>

 <<namename>>BatgirlBatgirl<<//namename>>

 <<//useruser>>

<<//usersusers>>

Pro tip: Most of you don’t need to know about XML, but if you’re working with legacy code or an older API,
you may have to use it. In that case, look up .Element Tree XML

8

https://python.readthedocs.io/en/stable/library/xml.etree.elementtree.html

Let’s Choose an API

To recap: APIs give us data we can use in either XML or JSON.

Let’s call one!

Check out , which tells us the people currently aboard the International Space
Station (ISS).

http://api.open-notify.org/astros.json

{{

 "number""number":: 55,,

 "people""people":: [[

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Oleg Novitskiy""Oleg Novitskiy"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Thomas Pesquet""Thomas Pesquet"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Peggy Whitson""Peggy Whitson"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Fyodor Yurchikhin""Fyodor Yurchikhin"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Jack Fischer""Jack Fischer"}}

]],,

 "message""message":: "success""success"

}}

9

http://api.open-notify.org/astros.json

Calling an API

Import the requestrequest module.

Call the API (requestsrequests..getget(())).

Parse the response with responseresponse..jsonjson(()).

open in

main.py history

1
2
3
4
5
6
7
8
9

import requests

Call the API by opening the url and reading the data.
response = requests.get("http://api.open-notify.org/astros.json")

Decode the raw JSON data
response_data = response.json()

print(response_data)

Python 3.6.1 (default, Dec 2015, 13:05:11)
[GCC 4.8.2] on linux

run

10

https://repl.it/@SuperTernary/python-programming-apis-iss
https://repl.it/@SuperTernary/python-programming-apis-iss/history

You Do: Calling an API

Open a new file, my_apimy_api..pypy. Type and run the code:

importimport requests requests

Call the # Call the APIAPI by opening the by opening the URLURL and reading the data and reading the data..

response response == requests requests..getget(("http://api.open­notify.org/astros.json""http://api.open­notify.org/astros.json"))

Decode the raw # Decode the raw JSONJSON data data..

response_data response_data == response response..jsonjson(())

printprint((response_dataresponse_data))

11

We Do: A New API

Awesome! Go back to your file. Let’s instead call this URL:

httphttp::////devdev..markitondemandmarkitondemand..comcom//ApiApi//QuoteQuote//xmlxml??symbolsymbol==AAPLAAPL

Why does it break? We can’t parse XML like JSON.

<<QuoteApiModelQuoteApiModel>>

 <<DataData>>

 <<StatusStatus>>SUCCESSSUCCESS<<//StatusStatus>>

 <<NameName>>Apple IncApple Inc<<//NameName>>

 <<SymbolSymbol>>AAPLAAPL<<//SymbolSymbol>>

 <<LastPriceLastPrice>>185.5185.5<<//LastPriceLastPrice>>

 <<ChangeChange>>1.341.34<<//ChangeChange>>

 <<ChangePercentChangePercent>>0.72762814940.7276281494<<//ChangePercentChangePercent>>

 <<TimestampTimestamp>>Thu Jun Thu Jun 2828 0000::0000::0000 UTCUTC­­0404::0000 20182018<<//TimestampTimestamp>>

 <<MarketCapMarketCap>>911758099000911758099000<<//MarketCapMarketCap>>

 <<VolumeVolume>>1736523517365235<<//VolumeVolume>>

12

Quick Review

We’ve called an API! Great job. We did this with the getget(()) function in the requestsrequests module. APIs are made
available by other websites or applications. They give us data we can use in either XML or JSON.

JSON:

XML:

importimport requests requests

response response == requests requests..getget(("http://api.open­notify.org/astros.json""http://api.open­notify.org/astros.json"))

response_data response_data == response response..jsonjson(())

printprint((response_dataresponse_data))

{{

 "users""users":: [[

 {{"name""name":: "Wonder Woman""Wonder Woman",, "id""id":: 00}},,

 {{"name""name":: "Black Panther""Black Panther",, "id""id":: 11}}

]]

}}

13

You Do: Back to JSON

Back in your file, change the API call back to httphttp::////apiapi..openopen­­notifynotify..orgorg//astrosastros..jsonjson.

Once it’s decoded, it’s a dictionary!

Replace your printprint statement:

Can we go further? Try to only print the namenames of the astronauts.

forfor key key,, ratings ratings inin response_data_decoded response_data_decoded..itemsitems(())::

 printprint(("Key:""Key:",, key key,, "Value:""Value:",, ratings ratings,, "\n""\n"))

14

Name Printing: Solution

Working backward, we have a:

Dictionary (key: namename).

Which is inside a list (the value of peoplepeople).

Which is inside a dictionary (key: peoplepeople).

For message the value is successFor message the value is success..

For people the value is For people the value is [[{{'craft''craft':: 'ISS''ISS',, 'name''name':: 'Oleg Artemyev''Oleg Artemyev'}},, {{'craft''craft':: ''

For number the value is For number the value is 6.6.

forfor item item inin response_data_decoded response_data_decoded[["people""people"]]::

 printprint((itemitem[["name""name"]]))

15

You Do: Shakespeare

In your file, call the Shakespeare API httphttp::////ShakeItSpeareShakeItSpeare..comcom//apiapi//poempoem.

Print only the poem.

16

Shakespeare: Solution

Print only the poem.

importimport requests requests

Call the # Call the APIAPI by opening the by opening the URLURL and reading the data and reading the data..

response response == requests requests..getget(("http://ShakeItSpeare.com/api/poem""http://ShakeItSpeare.com/api/poem"))

Decode the raw # Decode the raw JSONJSON data data..

response_data response_data == response response..jsonjson(())

printprint((response_dataresponse_data[["poem""poem"]]))

17

Quick Review

When we convert JSON, it keeps the same format, only in a Python structure.

When parsing an API’s return, look through the JSON to find the exact structure you need. Is it the string value
from the poempoem key? Or the value from each namename key in a list of dictionaries, which is the value of the peoplepeople

key?

Think it through before writing your code.

From the # From the ISSISS APIAPI::

{{ # The outer dictionary # The outer dictionary

 "number""number":: 55,, # Key # Key:: value value

 "people""people":: [[# Key and value # Key and value,, again again.. Here Here,, the value is a list the value is a list ofof dictio dictio

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Oleg Novitskiy""Oleg Novitskiy"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Thomas Pesquet""Thomas Pesquet"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Peggy Whitson""Peggy Whitson"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Fyodor Yurchikhin""Fyodor Yurchikhin"}},,

 {{"craft""craft":: "ISS""ISS",, "name""name":: "Jack Fischer""Jack Fischer"}}

]],,

 "message""message":: "success""success" # Key and value # Key and value..

18

I Do: API Authentication

Many APIs are free but require a key. This identifies the developer requesting access.

If we call the Giphy API:

With no key, httphttp::////apiapi..giphygiphy..comcom//v1v1//gifsgifs//searchsearch??qq==funnyfunny++catcat, we get Error Error ­­

UnauthorizedUnauthorized!

With a key, httphttp::////apiapi..giphygiphy..comcom//v1v1//gifsgifs//searchsearch??qq==funnyfunny++catcat&&api_keyapi_key==dc6zaTOxFJmzCdc6zaTOxFJmzC, it
works!

Syntax Notes:

The main API URL is httphttp::////apiapi..giphygiphy..comcom//v1v1//gifsgifs//searchsearch.

?? always delineates a URL and its parameters.

(The ?? is a standard for every URL! Searching Google for “banana,” with qq short for “query:”

httpshttps::////wwwwww..googlegoogle..comcom//searchsearch??qq==bananabanana).

(Here’s another one! Searching Amazon for “banana:” httpshttps::////wwwwww..amazonamazon..comcom//ss??fieldfield­­

keywordskeywords==bananabanana.)

Most importantly, never publish your key for a backend service, including on GitHub! (This is an example.) There
are other ways to provide your key to a server in order to keep that key safe. However, if your code is using19

You Do: OpenWeather API

Read about the API .

Use this key: &&appidappid==052052f26926ae9784c2d677ca7bc5dec98f26926ae9784c2d677ca7bc5dec98.

Call this URL: httphttp::////apiapi..openweathermapopenweathermap..orgorg//datadata//2.52.5//weatherweather??zipzip==

<<ZIP_CODE_HEREZIP_CODE_HERE>>,,usus&&appidappid==052052f26926ae9784c2d677ca7bc5dec98f26926ae9784c2d677ca7bc5dec98.

Note the parameters:

zipzip==<<ZIP_CODE_HEREZIP_CODE_HERE>>

appidappid==<<KEYKEY HEREHERE>>

Enter any zip code you choose (e.g., 6061460614).

Display the current temperature, high and low temperature, current weather description, and the name of the city
that came back from the API.

Bonus: Print the temperature in both Fahrenheit and Celsius.

here

20

https://openweathermap.org/current

Summary

APIs:

Handy URLs from which we can get information.
Sometimes require keys.
Usually free.

Call with the requestsrequests(()) module.

XML and JSON:

Two formats in which APIs might return information to us.
XML is legacy.

JSON looks like a dictionary.

21

Additional Resources

Here’s an example of a .
The

stolen key horror story
Programmable Web API Directory

Element Tree XML

22

https://wptavern.com/ryan-hellyers-aws-nightmare-leaked-access-keys-result-in-a-6000-bill-overnight
http://www.programmableweb.com/apis/directory
https://python.readthedocs.io/en/stable/library/xml.etree.elementtree.html

