{0

Introduction to APlIs

Lesson Objectives

After this lesson, you will be able to...

e Describe what an application programming interface (API) is and why we might use one.
e |dentify common APIs on the web.
e Call an APL.

Discussion: Web Magic

Have you seen...

A website with Google Maps on the page (like Yelp)?

A program that had live stock market info?

A website that isn’t Twitter but shows a live Twitter feed?

Any app that pulls info from somewhere else?

How did they do this?

APIs (Application Program Interfaces)

An APl is a service that provides raw data for public use.

APls give us data, maps, anything!

What’s the API? Sample URL — put this in a new tab!

The Star Wars API: Request R2-D2 info http://swapi.co/api/people/3

Markit Digital’s API: Request current Apple stock info http://dev.markitondemand.com/Api/Quote/xml?symbol=AAPL

OpenWeatherMap: The current weather in London https://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b6907d289e10d714a6e88b30761fae22

Do you think you’ve been on websites that call an API?

Does the JSON look unreadable in the browser? If you’re using Chrome, install the JSONView plugin.

http://swapi.co/api/people/3
http://dev.markitondemand.com/Api/Quote/xml?symbol=AAPL
https://samples.openweathermap.org/data/2.5/weather?q=London,uk&appid=b6907d289e10d714a6e88b30761fae22
https://chrome.google.com/webstore/detail/jsonview/chklaanhfefbnpoihckbnefhakgolnmc?hl=en

How Do We Use an API?

We’'ll use the requests module.

import requests

Call the API by opening the URL and reading the
We use the 'get() function in "requests’

response = requests.get ("<API URL HERE>"

print (response

Prints out the requested information!

This works, but there’s one very helpful line missing!

Before we see this in action, let’s look at what the APl might return.

data

JSON vs. XML

Imagine: You write code for a list.

my list = [1, 4, 2
my list.append(len(my list

my list[l] = "new element!"

for item 1n my list

print item

But then, my 1ist is unexpectedly a dictionary, or an int, or even a class! The code we wrote won’t work.

APls can give data back in two ways: JSON or XML. Depending on what the API does, we need to write our
program a different way.

How Do APIs Give Us Info? Option 1: JSON

Here’s a potential return from an API:

"users"
"name": "Wonder Woman", "id": O
"name": "Black Panther", "id": 1
"name": "Batgirl", "id": 2

Looks like a dictionary with a list of dictionaries inside it, right?

But it’s not a dictionary! It’s JSON (JavaScript Object Notation).

The requests module has a built-in JSON decoder to turn JSON into a Python dictionary.

We can decode JSON with decoded data = response from request.json

http://docs.python-requests.org/en/master/user/quickstart/#json-response-content

How Do APIs Give Us Info? Option 2: XML

Instead of JSON, we might get XML.:

<users>
<user 1d="0">
<name>Wonder Woman</name>
</user>
<user 1d="1">
<name>Black Panther</name>
</user>
<user 1d="2">
<name>Batgirl</name>
</user>

</users>
JSON is certainly easier to read!
e We'll stick with JSON whenever we can.

Pro tip: Most of you don’t need to know about XML, but if you’re working with legacy code or an older API,
you may have to use it. In that case, look up Element Tree XML.

https://python.readthedocs.io/en/stable/library/xml.etree.elementtree.html

Let’s Choose an API

To recap: APIs give us data we can use in either XML or JSON.

Let’s call one!

Check out http://api.open-notify.org/astros.json, which tells us the people currently aboard the International Space

Station (ISS).

"number": 5,

"people": [
{"craft":
{"craft":
{"craft":
{"craft":

{"craft":

1,

"message":

"ISS", "name":
"ISS", "name":
"ISS", "name":
"ISS", "name":

"ISS"’ "name":

"success"

"Oleg Novitskiy"},
"Thomas Pesquet"},
"Peggy Whitson"},
"Fyodor Yurchikhin"},

"Jack Fischer"}

http://api.open-notify.org/astros.json

Calling an API

e Import the request module.
o Callthe APl (requests.get ()).

o Parse the response with response. json

openin @repl-,i’r

main.py 8

1 import requests

2

3

4 response = requests.get("http://api.open-notify.org/astros.json")
5

6

7 response_data = response.json()

8

9 print(response_data)

Python 3.6.1 (default, Dec 2015, 13:05:11)
[GCC 4.8.2] on linux

&

https://repl.it/@SuperTernary/python-programming-apis-iss
https://repl.it/@SuperTernary/python-programming-apis-iss/history

You Do: Calling an API

Open a new file, my api.py. Type and run the code:

import requests

Call the API by opening the URL and reading the data

response = requests.get ("http://api.open-notify.org/astros.json"

Decode the raw JSON data

response data = response.json

print (response data

We Do: A New API

Awesome! Go back to your file. Let’s instead call this URL:

http://dev.markitondemand.com/Api/Quote/xml?symbol=AAPL

Why does it break? We can’t parse XML like JSON.

<QuoteApiModel>
<Data>
<Status>SUCCESS</Status>
<Name>Apple Inc</Name>
<Symbol>AAPL</Symbol>
<LastPrice>185.5</LastPrice>
<Change>1.34</Change>
<ChangePercent>0.7276281494</ChangePercent>
<Timestamp>Thu Jun 28 00:00:00 UTC-04:00 2018</Timestamp>
<MarketCap>911758099000</MarketCap>

<Volume>17365235</Volume>

@

Quick Review

We've called an API! Great job. We did this with the get () function in the requests module. APIs are made

available by other websites or applications. They give us data we can use in either XML or JSON.

import requests
response = requests.get ("http://api.open-notify.org/astros.json"
response data = response.json

print (response data

JSON:
"users"
"name" : "Wonder Woman", "id": O
"name" "Black Panther" "id": 1
XML:

@

You Do: Back to JSON

Back in your file, change the API call back to http://api.open-notify.org/astros. json.

Once it’s decoded, it’s a dictionary!

Replace your print statement:

for key, ratings in response data decoded.items

print ("Key:", key, "Value:", ratings, "\n"

Can we go further? Try to only print the names of the astronauts.

mM

Name Printing: Solution
Working backward, we have a:

e Dictionary (key: name).

e Which is inside a list (the value of people).

e Which is inside a dictionary (key: people).
For message the value is success
For people the value 1is 'craft' TS '"name'’

For number the wvalue 1s 6.

for item 1n response data decoded|['"people"

print (item["name"

@ s

'Oleg Artemyev'

'craft'

v

You Do: Shakespeare
In your file, call the Shakespeare APl http://ShakeItSpeare.com/api/poemn.

Print only the poem.

@

Shakespeare: Solution

Print only the poem.

import requests

Call the API by opening the URL and reading the data

response = requests.get ("http://ShakeltSpeare.com/api/poem"

Decode the raw JSON data

response data = response.json

print (response data["poem"

mﬁ

Quick Review

When we convert JSON, it keeps the same format, only in a Python structure.

When parsing an API’s return, look through the JSON to find the exact structure you need. Is it the string value
from the poem key? Or the value from each name key in a list of dictionaries, which is the value of the people

key?

Think it through before writing your code.

From the ISS API:

[# The outer dictionary

"number": 5, # Key: value
"people": | # Key and value, again. Here, the value is a list of dictic
{"craft": "ISS", "name": "Oleg Novitskiy"},
{"craft": "ISS", "name": "Thomas Pesquet"},
{"craft": "ISS", "name": "Peggy Whitson"},
{"craft": "ISS", "name": "Fyodor Yurchikhin"},
{"craft": "ISS", "name": "Jack Fischer"}
1,
"message": "success" # Key and value.

@

| Do: APl Authentication

Many APIs are free but require a key. This identifies the developer requesting access.

If we call the Giphy API:

e With no key, http://api.giphy.com/v1l/gifs/search?g=funny+cat, we get Error -

Unauthorized!

e With akey, http://api.giphy.com/v1l/gifs/search?g=funny+cat&sapi key=dc6zaTOxFJmzC, it

works!
Syntax Notes:

e The main APIURL is http://api.giphy.com/vl/gifs/search.

e ° always delineates a URL and its parameters.
= (The 2 is a standard for every URL! Searching Google for “banana,” with g short for “query:”

https://www.google.com/search?g=banana).

= (Here’s another one! Searching Amazon for “banana:” https://www.amazon.com/s?field-

keywords=banana.)

Most importantly, never publish your key for a backend service, including on GitHub! (This is an example.) There
areé other ways to provide your key to a server in order to keep that key safe. However, if your code is using

You Do: OpenWeather API

Read about the API here.

Use this key: sappid=052£26926ae9784c2d677ca7’bc5dec98s.

Call this URL: http://api.openweathermap.org/data/2.5/weather?zip=

<ZIP CODE HERE>, us&appid=052f26926ae9784c2d6/7ca’bc5dec9s.

Note the parameters:

e zip=<ZIP CODE_HERE>

e appid=<KEY HERE>

Enter any zip code you choose (e.g., 60614).

e Display the current temperature, high and low temperature, current weather description, and the name of the city
that came back from the API.

Bonus: Print the temperature in both Fahrenheit and Celsius.

@ -

https://openweathermap.org/current

Summary

APls:

Handy URLs from which we can get information.

Sometimes require keys.

Usually free.

Call with the requests () module.

XML and JSON:

e Two formats in which APIs might return information to us.
e XML is legacy.
e JSON looks like a dictionary.

Additional Resources

e Here’s an example of a stolen key horror story.
e The Programmable Web API Directory
e Element Tree XML

mQZ

https://wptavern.com/ryan-hellyers-aws-nightmare-leaked-access-keys-result-in-a-6000-bill-overnight
http://www.programmableweb.com/apis/directory
https://python.readthedocs.io/en/stable/library/xml.etree.elementtree.html

