{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "## Homework: Intro to Pandas\n", "\n", "_Author: Kevin Coyle (L.A.)_\n", "\n", "---\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Welcome!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Pandas: Intro Practice Problems\n", "\n", "In this homework, you're going to write code for a few problems. \n", "\n", "You'll be practicing these programming concepts we've covered in class:\n", "* Reading data sets into Pandas.\n", "* Filtering, manipulating, and sorting data sets.\n", "* Basic exploratory data analysis with Pandas." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #1. Import Pandas with an alias of `pd`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #2. Read in the NBA players `csv` into a variable called `nba_df`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a data set of NBA players from 2015. The filename is `NBA_players_2015.csv`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #3. Look at the first five rows of the data set." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #4. Check out the shape of the data set." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #5. Run some summary stats on the data set with the `describe()` function." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #6. Sort the data set in on the `players` column in alphabetical order." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #7. Filter the data set. Create three sub DataFrames from the `position` column for `G`, `F`, and `C`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### #8. Run `describe()` on these new DataFrames. Compare the mean field goals (the `fg` column) between positions." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The end!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Great job!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }