You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

686 lines
27 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title></title>
<meta name="description" content="">
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<!-- For syntax highlighting -->
<link rel="stylesheet" href="../../../../lib/css/zenburn.css">
<link rel="stylesheet" href="../../../../lib/css/prism.css">
<link rel="stylesheet" href="../../../../css/reveal.css">
<link rel="stylesheet" href="../../../../css/theme/ga-title.css" id="theme">
<!--[if lt IE 9]>
<script src="lib/js/html5shiv.js"></script>
<![endif]-->
<link rel="stylesheet" type="text/css" href="https://s3.amazonaws.com/python-ga/proxima-nova/fonts.css" />
</head>
<body class="language-javascript">
<div class="reveal">
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<!--
---
title: Next Steps in Data Science
type: lesson
duration: "0:45"
creator: Joseph Nelson
---
-->
<section id="section" class="level2 separator">
<h2><img src="https://s3.amazonaws.com/python-ga/images/GA_Cog_Medium_White_RGB.png" /></h2>
<h1>
Next Steps in Data Science
</h1>
<!--
## Overview
This lesson recaps what students have achieved, contextualizes that into the broader data science ecosystem, and recommends libraries and resources to further their journey.
## Learning Objectives
*After this lesson, you will be able to:*
- Identify core libraries in the data science ecosystem, and their purpose
- Determine how to learn more about which area is most interesting to you!
- Discuss hiring in the data science job market, and strategies to support a search
## Duration
45 minutes.
## Suggested Agenda
| Time | Activity | Purpose |
|-------------|----------|---------|
| 0:00 - 0:03 | Welcome |
| 0:03 - 0:18 | Introspection and Review |
| 0:18 - 0:43 | Establishing Yourself |
| 0:43 - 0:45 | Summary |
## Materials and Preparation:
- Give out the link to the slides.
- This lesson, more than any other in this unit, gives the instructor the ability to inject their own perspective throughout the lesson. Do not hesitate to do so!
## Differentiation and Extensions
- Add your own experience throughout the lesson.
- If you're teaching this on campus to students, feel free to add several interview prep questions towards the end.
-->
<hr />
</section>
<section id="learning-objectives" class="level2">
<h2>Learning Objectives</h2>
<p><em>After this lesson, you will be able to:</em></p>
<ul>
<li>Identify core libraries in the data science ecosystem.</li>
<li>Determine how to learn more about which area is most interesting to you!</li>
<li>Discuss hiring in the data science job market and strategies to support a search.</li>
</ul>
<hr />
</section>
<section id="celebrate" class="level2">
<h2>Celebrate</h2>
<p>Reflect for a moment - youve:</p>
<ul>
<li>Learned the fundamentals of Python, from data types to object oriented programming.</li>
<li>Used your first API to build a simple application.</li>
<li>Applied Pandas to synthesize insights from datasets.</li>
</ul>
<p>Thats a lot! It deserves a huge congratulations.</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Pause here and check that everyone understands what theyve done so far.</li>
<li>Make sure they feel accomplished!</li>
</ul>
</aside>
<hr />
</section>
<section id="discussion-introspection" class="level2">
<h2>Discussion: Introspection</h2>
<ul>
<li><p>What did you enjoy most?</p></li>
<li><p>What did you find most intriguing?</p></li>
<li><p>What do you want to know more about?</p></li>
<li><p>What caused the most struggle?</p></li>
</ul>
<p>This isnt an all-frills exercise. It helps inform your future data science growth!</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Stress that the point of this slide is to help students figure out what avenues they should explore next, so they should really think about these questions.</li>
</ul>
</aside>
<hr />
</section>
<section id="revisiting-the-data-science-process" class="level2">
<h2>Revisiting the data science process</h2>
<p>Its important to place our Pandas work into the broader picture of data science.</p>
<p>To do so, recall our data science workflow:</p>
<p><img src="https://s3.amazonaws.com/ga-instruction/assets/python-fundamentals/Data-Framework-White-BG.png" /></p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Recap what each of these steps consists of and where theyve seen it applied.</li>
<li>Describe why we focus on the problem-framing portion of data science, consider personal experience.</li>
<li>Data science is incredibly nascent, and its impact will be fully felt when problems are well-framed in advance of applying techniques</li>
</ul>
</aside>
<hr />
</section>
<section id="discussion-condensed-workflow" class="level2">
<h2>Discussion: Condensed Workflow</h2>
<ol type="1">
<li><strong>Identify</strong> the problem</li>
<li><strong>Acquire</strong> the right data</li>
<li><strong>Parse</strong> the data</li>
<li><strong>Mine</strong> our data</li>
<li><strong>Refine</strong> our data</li>
<li><strong>Build</strong> a model</li>
<li><strong>Present</strong> our work</li>
</ol>
<p><strong>Class Question</strong>: Where have we focused our work?</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Note that this is the same workflow in a more brief wording, and also something theyll see referred to.</li>
<li>Encourage discussion (answers on next slides, so when discussion seems to be wrapping up, turn the slide).</li>
</ul>
</aside>
<hr />
</section>
<section id="where-we-focused" class="level2">
<h2>Where we focused</h2>
<ol type="1">
<li>Identify the problem</li>
<li>Acquire the right data</li>
<li><strong>Parse the data. We did this!</strong> Remember reading the Iowa Liquor data dictionary? Did you revisit IMDBs source to understand any columns?</li>
<li><strong>Mine our data. We did this!</strong> Checked subpopulation analyses and, perhaps, feature creation. We filtered to a specific county; potentially creating our own IMDB v Rotten Tomato metrics.</li>
<li><strong>Refine our data. We did this!</strong> We handled missing Iowa sales data and formatting information into integers rather than “$15.00”</li>
<li>Build a model</li>
<li>Present our work</li>
</ol>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Go through these three and check for understanding / agreement.</li>
</ul>
</aside>
<hr />
</section>
<section id="where-we-did-a-bit" class="level2">
<h2>Where we did a bit</h2>
<ol type="1">
<li><strong>Identify the problem. We did a bit!</strong> Identify your own question about IMDB data, and answer it.</li>
<li><strong>Acquire the right data. We did a bit!</strong> Using the OMDBApi to obtain Rotten Tomato data for our IMDB dataset.</li>
<li>Parse the data</li>
<li>Mine our data</li>
<li>Refine our data</li>
<li>Build a model</li>
<li><strong>Present our work. We did a bit!</strong> Maintaining clean Jupyter Notebooks (right?) and creating takeaway visualizations.</li>
</ol>
<p><strong><em>Whew</em></strong>! We did cover a lot of ground!</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Go down these three and check for understanding.</li>
</ul>
</aside>
<hr />
</section>
<section id="where-we-didnt-focus" class="level2">
<h2>Where we didnt Focus</h2>
<ol type="1">
<li>Identify the problem</li>
<li>Acquire the right data</li>
<li>Parse the data</li>
<li>Mine our data</li>
<li>Refine our data</li>
<li><strong>Build a model. We never did this!</strong></li>
<li>Present our work</li>
</ol>
<blockquote>
<p>“Hey! I thought thats all data science is! Machine learning artificial intelligence neural networks [on the blockchain]!”</p>
</blockquote>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>This is a quick slide - its elaborated on in the next slide.</li>
</ul>
</aside>
<hr />
</section>
<section id="the-truth-about-data-science-sh" class="level2">
<h2>The truth about data science (sh)</h2>
<ul>
<li>Exploratory data analysis is typically <strong>80%</strong> of a data science problem.</li>
<li>Modeling is <strong>20%</strong>.</li>
</ul>
<p>Whats more:</p>
<ul>
<li>The steps you take to set up your models in EDA, ultimately have a outsized impact on the result you will achieve.</li>
</ul>
<aside class="notes">
<p><strong>Talking Points</strong>:</p>
<ul>
<li>Many, many businesses are sitting on latent and rich ($$$) relationships in their data that a Pandas expert can unlock.</li>
</ul>
</aside>
<hr />
</section>
<section id="apologies-in-advance-for-this-one" class="level2">
<h2>Apologies in advance for this one</h2>
<p><img src="https://s3.amazonaws.com/ga-instruction/assets/python-fundamentals/what-i-really-ds.png" /></p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>This is just a quick slide to lighten up the room! Give students a chance to read it and laugh before moving on.</li>
</ul>
</aside>
<hr />
</section>
<section id="exceptions" class="level2">
<h2>Exceptions</h2>
<ul>
<li><p>Many companies will structure teams such that some individuals focus 100% of their time on the 20% of the problem which is solved by modeling.</p></li>
<li>Weve focused on Pandas EDA.
<ul>
<li>The area you can make the greatest impact with.</li>
</ul></li>
</ul>
<aside class="notes">
<p><strong>Talking Points</strong>:</p>
<ul>
<li>Of course, rules are meant for exceptions. Many companies will structure teams such that some individuals focus 100% of their time on the 20% of the problem which is solved by modeling.</li>
<li>In giving you an “Intro,” we focused on the area you can make the greatest impact with Python: Pandas EDA.</li>
<li>In addition, there are more pre-requisites to discuss when it comes to learning modeling.</li>
</ul>
</aside>
<hr />
</section>
<section id="python-data-science-package-ecosystem" class="level2">
<h2>Python Data Science Package Ecosystem</h2>
<p>We know Pandas!</p>
<ul>
<li>Awesome!</li>
<li>Reads in data.</li>
<li>Exploratory data analysis.</li>
<li>Munging.</li>
<li>Wrangling.</li>
<li>Visualization via matplotlib</li>
</ul>
<p>What else is there?</p>
<aside class="notes">
<p><strong>Talking Points</strong>:</p>
<ul>
<li>We know the steps to solving a problem, and we know what <strong>Pandas</strong> can do. What about those other steps in the process?</li>
<li>Many packages support our endeavors throughout the problem solving workflow.</li>
<li>It would be a fools errand to outline <em>every</em> Python library, so lets highlight the big ones. And all of these are <strong>open source:</strong> free to use and constantly improving.</li>
</ul>
</aside>
<hr />
</section>
<section id="recommend-libraries-for-ds" class="level2">
<h2>Recommend Libraries for DS</h2>
<p>Once youre comfortable with Pandas…</p>
<ul>
<li><strong>Seaborn:</strong>
<ul>
<li>Creates visualizations (of greater complexity than Pandas)</li>
<li>With a few lines of code via <code>matplotlib</code></li>
</ul></li>
<li><strong>NumPy:</strong>
<ul>
<li>Numerical computation, particularly linear algebra.</li>
</ul></li>
<li><strong>SciPy:</strong>
<ul>
<li>Scientific computation, especially statistics.</li>
</ul></li>
<li><strong>Requests:</strong>
<ul>
<li>Making web requests - calling APIs!</li>
</ul></li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Go quickly down these bullets - add your own thoughts on what you recommend students to look in to.</li>
<li>If any students earlier expressed interest in something here, call them out to it.</li>
</ul>
</aside>
<hr />
</section>
<section id="other-ds-libraries" class="level2">
<h2>Other DS Libraries</h2>
<p>Not as ubiquitous or popular, but still good:</p>
<ul>
<li><strong>BeautifulSoup:</strong>
<ul>
<li>Easily parse HTML.</li>
</ul></li>
<li><strong>Statsmodels:</strong>
<ul>
<li>Traditional statistic inference techniques, like linear regression.</li>
</ul></li>
<li><strong>Scikit-learn:</strong>
<ul>
<li>All-purpose machine learning model construction.</li>
</ul></li>
<li><strong>NLTK</strong> | <strong>SpaCy</strong>
<ul>
<li>Natural language processing.</li>
</ul></li>
<li><strong>TensorFlow</strong> | <strong>PyTorch</strong> | <strong>MxNet</strong>
<ul>
<li>Neural network research and model construction.</li>
</ul></li>
<li><strong>PySpark</strong>
<ul>
<li>Interacting with big data.</li>
</ul></li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Go quickly down these bullets - add your own thoughts on what you recommend students to look in to.</li>
<li>If any students earlier expressed interest in something here, call them out to it.</li>
</ul>
</aside>
<hr />
</section>
<section id="discussion-what-for-what" class="level2">
<h2>Discussion: What-for-what?</h2>
<p>At what step would each library be most helpful?</p>
<p>The data science steps:</p>
<ul>
<li><strong>Identify</strong> the problem</li>
<li><strong>Acquire</strong> the right data</li>
<li><strong>Parse</strong> the data</li>
<li><strong>Mine</strong> our data</li>
<li><strong>Refine</strong> our data</li>
<li><strong>Build</strong> a model</li>
<li><strong>Present</strong> our work</li>
</ul>
<hr />
</section>
<section id="discussion-what-for-what-1" class="level2">
<h2>Discussion: What-for-what?</h2>
<p>Match up these libraries:</p>
<ul>
<li><strong>Pandas:</strong> for reading in data, exploratory data analysis, munging, wrangling, and visualization via matplotlib</li>
<li><strong>Seaborn:</strong> creates visualizations (of greater complexity) with a few lines of code via matplotlib</li>
<li><strong>Requests:</strong> for making web requests</li>
<li><strong>NumPy:</strong> for numerical computation, particularly linear algebra</li>
<li><strong>SciPy:</strong> for scientific computation, especially statistics</li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Have students discuss and try this as a group. Then, match them up and talk students through why (e.g. <strong>requests</strong> would be used to <strong>acquire</strong> the data; <strong>seaborn</strong> would be used to <strong>model</strong> the data)</li>
</ul>
</aside>
<hr />
</section>
<section id="learning-more---how" class="level2">
<h2>Learning More - How?</h2>
<ul>
<li>Learn by doing.
<ul>
<li>Learning requires consuming and producing. (Perhaps even in 50/50 balance)</li>
</ul></li>
<li><p>Consume relevant content about what you want to learn (videos, books, etc).</p></li>
<li><p>Have frequent <strong>projects</strong> and <strong>exercises</strong> to practice.</p></li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Encourage students to learn on their own!</li>
<li>Give specific suggestions if you can.</li>
<li>Encourage students to identify a singular learning goal.</li>
<li>Encourage students to make mistakes (seriously), and discuss why talking through problem solving is key.</li>
</ul>
</aside>
<hr />
</section>
<section id="learning-more---where" class="level2">
<h2>Learning More - Where?</h2>
<p>Theres an abundance of resources, which can seem overwhelming, but its actually a huge benefit.</p>
<p>For self-paced and online programs about a specific area, consider:</p>
<ul>
<li>DataCamp</li>
<li>DataQuest</li>
<li>Coursera</li>
</ul>
<p>For instructor-led and guided education, come on back to General Assembly!</p>
<ul>
<li>We have expert-led workshops and courses in data science:
<ul>
<li>A 10-week part-time data science (60hrs).</li>
<li>The Data Science Immersive, a full-time, three month program (480hrs).</li>
</ul></li>
</ul>
<p>These classes walk through the full data science lifecycle.</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Encourage students to learn more!</li>
<li>Give specific suggestions if you can.</li>
<li>There are an abundance of resources, but a lack of discipline and support when it comes to learning. To remedy this, encourage students to work together in study groups, attend Meetups, and pair their learning with immediate application</li>
</ul>
</aside>
<hr />
</section>
<section id="stretchhhh" class="level2">
<h2>Stretchhhh</h2>
<p><img src="https://s3.amazonaws.com/ga-instruction/assets/python-fundamentals/panda-lying-down.jpeg" /></p>
<ul>
<li><p>Stand up, stretch a bit.</p></li>
<li><p>Or lie down!</p></li>
<li><p>Im not a cop.</p></li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Its been a long course. Give them a second for a break and a smile.</li>
</ul>
</aside>
<hr />
</section>
<section id="what-do-you-really-need" class="level2">
<h2>What Do You Really Need?</h2>
<p>Data scientists need three core skills:</p>
<ul>
<li><strong>Analytical thinking</strong></li>
<li><strong>Mathematics and statistics proficiency</strong></li>
<li><strong>Coding ability</strong></li>
</ul>
<p>Lets break these down.</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>This is just a quick overview - details on following slides.</li>
</ul>
<p><strong>Talking Points</strong>:</p>
<ul>
<li>We now have the coding ability, so in the next slides, lets talk about what else you might need.</li>
</ul>
</aside>
<hr />
</section>
<section id="analytical-thinking" class="level2">
<h2>Analytical thinking</h2>
<ul>
<li><p>How well can you structure a data science problem / target an analysis for high impact output?</p></li>
<li><p>Do you select metrics that align with those goals?</p></li>
<li><p>Do you break a big problem into manageable, component parts?</p></li>
</ul>
<p><strong>Class Question:</strong></p>
<ul>
<li>Imagine you are a data scientist at Facebook.</li>
<li>Users list high schools they attended - some real, some fake.</li>
</ul>
<p>How could you verify that a given high school a user listed is the one they attended? How would you measure success?</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>This is a discussion! Encourage students to suggest answers.</li>
<li>When theyve finished, give the best answer.</li>
</ul>
<strong>Answer</strong>: - Referencing a full list of true high schools, and text matching against it. - Plotting the occurrence of various high school names, and assume that names that are more common (Jefferson, Lincoln, Roosevelt) are more likely consider scoring against a Z-score or Normal Distribution to determine legitimacy of various names
</aside>
<hr />
</section>
<section id="mathematics-and-statistics-proficiency" class="level2">
<h2>Mathematics and statistics proficiency</h2>
<p>Can you apply fundamental maths and stats to problem solving? Do you have a firm understanding of probability? Linear algebra?</p>
<p><strong>Class Question:</strong></p>
<ul>
<li>There are 52 cards in a deck.</li>
<li>26 are red, and 26 are black. The 52 cards make up four suits (hearts, diamonds, spades, clubs).</li>
<li>There are 13 of each suit (ace-10, jack, queen, king).</li>
<li>It is a fair deck of cards.</li>
</ul>
<p>What is the probability of drawing the 4 of spades OR a club? What is the probability of drawing any 3 OR a spade?</p>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>This is a discussion! Encourage students to suggest answers.</li>
<li>When theyve finished, give the best answer.</li>
</ul>
<p><strong>Answer</strong>: - What is the probability of drawing the 4 of spades or a club? <em>These two separate probabilities are 1/52 and 13/52, and theyre mutually exclusive so you just add them: 5/52</em> - - What is the probability of drawing a 3 or a spade? <em>There are 4 threes and 13 spades, but one of the spades is a 3. To satisfy the event described in this problem, there are 16 possible draws, out of the 52 cards; P(event e) = 16/52 which reduces to 4/13.</em></p>
</aside>
<hr />
</section>
<section id="coding-ability" class="level2">
<h2>Coding ability</h2>
<ul>
<li>Can you write readable, maintainable, efficient code?</li>
<li>Can you translate your thinking skills into programmatic thinking?</li>
<li>Do you know Python, R, SQL, and/or Scala? <em>(Yes, you do!)</em></li>
</ul>
<p><strong>Question:</strong></p>
<p>Do you recall Fizzbuzz? Try writing it again here from scratch.</p>
<p>Open a new Python file, <code>fizz.py</code>.</p>
<ul>
<li>Write a program that prints the numbers from 1 to <code>n</code> (passed in).</li>
<li>But, for multiples of three, print “Fizz” instead of the number.</li>
<li>For multiples of five, print “Buzz”.</li>
<li>For numbers which are multiples of both three and five, print “FizzBuzz”.</li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Have each student try to do this in their own time. Allow 5-10 minutes.</li>
<li>When theyve finished, give the best answer with explanation.</li>
</ul>
<div class="sourceCode" id="cb1"><pre class="sourceCode python"><code class="sourceCode python"><a class="sourceLine" id="cb1-1" data-line-number="1"><span class="kw">def</span> fizzbuzz(n):</a>
<a class="sourceLine" id="cb1-2" data-line-number="2"></a>
<a class="sourceLine" id="cb1-3" data-line-number="3"> <span class="cf">if</span> n <span class="op">%</span> <span class="dv">3</span> <span class="op">==</span> <span class="dv">0</span> <span class="kw">and</span> n <span class="op">%</span> <span class="dv">5</span> <span class="op">==</span> <span class="dv">0</span>:</a>
<a class="sourceLine" id="cb1-4" data-line-number="4"> <span class="cf">return</span> <span class="st">&#39;FizzBuzz&#39;</span></a>
<a class="sourceLine" id="cb1-5" data-line-number="5"> <span class="cf">elif</span> n <span class="op">%</span> <span class="dv">3</span> <span class="op">==</span> <span class="dv">0</span>:</a>
<a class="sourceLine" id="cb1-6" data-line-number="6"> <span class="cf">return</span> <span class="st">&#39;Fizz&#39;</span></a>
<a class="sourceLine" id="cb1-7" data-line-number="7"> <span class="cf">elif</span> n <span class="op">%</span> <span class="dv">5</span> <span class="op">==</span> <span class="dv">0</span>:</a>
<a class="sourceLine" id="cb1-8" data-line-number="8"> <span class="cf">return</span> <span class="st">&#39;Buzz&#39;</span></a>
<a class="sourceLine" id="cb1-9" data-line-number="9"> <span class="cf">else</span>:</a>
<a class="sourceLine" id="cb1-10" data-line-number="10"> <span class="cf">return</span> <span class="bu">str</span>(n)</a>
<a class="sourceLine" id="cb1-11" data-line-number="11"></a>
<a class="sourceLine" id="cb1-12" data-line-number="12"><span class="bu">print</span> <span class="st">&quot;</span><span class="ch">\n</span><span class="st">&quot;</span>.join(fizzbuzz(n) <span class="cf">for</span> n <span class="kw">in</span> <span class="bu">xrange</span>(<span class="dv">1</span>, <span class="dv">21</span>))</a></code></pre></div>
</aside>
<hr />
</section>
<section id="establishing-yourself-as-a-data-scientist" class="level2">
<h2>Establishing Yourself as a Data Scientist</h2>
<ol type="1">
<li><p>Start a blog. - Blogs are incredibly common in technology. - They demonstrate your learning process.</p></li>
<li><p>Share with your network. - Keep your friends and coworkers engaged on what youre doing and learning. - Opportunities are sometimes spurious.</p></li>
<li><p>Attend Meetups and other networking opportunities to learn, meet, and share.</p></li>
</ol>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Encourage students to learn more!</li>
<li>Give specific suggestions if you can.</li>
<li>Emphasize the importance of blogging to prove retention of information.</li>
</ul>
</aside>
<hr />
</section>
<section id="summary" class="level2">
<h2>Summary:</h2>
<ul>
<li>There are many paths you can go!</li>
<li>Check the Additional Reading for links to libraries. - You probably want Seaborn, NumPy, or SciPy.</li>
<li>Work on your core skills!
<ul>
<li>Analytical thinking.</li>
<li>Mathematics and statistics proficiency.</li>
<li>Coding ability.</li>
</ul></li>
</ul>
<aside class="notes">
<p><strong>Teaching Tips</strong>:</p>
<ul>
<li>Do a quick recap for understanding.</li>
<li>See if any students have questions about their potential next steps.</li>
</ul>
</aside>
<hr />
</section>
<section id="additional-reading" class="level2">
<h2>Additional Reading</h2>
<ul>
<li><a href="https://pandas.pydata.org/pandas-docs/stable/#">Pandas docs</a></li>
<li><a href="https://seaborn.pydata.org/">Seaborn docs</a></li>
<li><a href="http://docs.python-requests.org/en/master/">Requests docs</a></li>
<li><a href="https://docs.scipy.org/doc/numpy-1.13.0/user/index.html">NumPy tutorial</a></li>
<li><a href="https://docs.scipy.org/doc/scipy/reference/tutorial/index.html">SciPy tutorial</a></li>
</ul>
</section>
</div>
<footer><span class='slide-number'></span></footer>
</div>
<script src="../../../../lib/js/head.min.js"></script>
<script src="../../../../js/reveal.js"></script>
<script>
var dependencies = [
{ src: '../../../../lib/js/classList.js', condition: function() { return !document.body.classList; } },
{ src: '../../../../plugin/markdown/showdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: '../../../../plugin/markdown/markdown.js', condition: function() { return !!document.querySelector( '[data-markdown]' ); } },
{ src: '../../../../plugin/prism/prism.js', async: true, callback: function() { /*hljs.initHighlightingOnLoad();*/ } },
{ src: '../../../../plugin/zoom-js/zoom.js', async: true, condition: function() { return !!document.body.classList; } }
];
if (Reveal.getQueryHash().instructor === 1) {
dependencies.push({ src: '../../../../plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } });
}
// Full list of configuration options available here:
// https://github.com/hakimel/reveal.js#configuration
Reveal.initialize({
controls: true,
progress: true,
history: true,
center: false,
slideNumber: true,
// available themes are in /css/theme
theme: Reveal.getQueryHash().theme || 'default',
// default/cube/page/concave/zoom/linear/fade/none
transition: Reveal.getQueryHash().transition || 'slide',
// Optional libraries used to extend on reveal.js
dependencies: dependencies
});
if (Reveal.getQueryHash().instructor === 1) {
Reveal.configure(dependencies.push({ src: '../../../../plugin/notes/notes.js', async: true, condition: function() { return !!document.body.classList; } }));
}
Reveal.addEventListener('ready', function() {
if (Reveal.getCurrentSlide().classList.contains('separator-subhead')) {
document.getElementById('theme').setAttribute('href', '../../../../css/theme/ga-subhead.css');
} else if (Reveal.getCurrentSlide().classList.contains('separator')) {
document.getElementById('theme').setAttribute('href', '../../../../css/theme/ga-title.css')
} else {
document.getElementById('theme').setAttribute('href', '../../../../css/theme/ga.css');
}
});
Reveal.addEventListener('slidechanged', function(e) {
if (Reveal.getCurrentSlide().classList.contains('separator-subhead')) {
document.getElementById('theme').setAttribute('href', '../../../../css/theme/ga-subhead.css');
} else if (Reveal.getCurrentSlide().classList.contains('separator')) {
document.getElementById('theme').setAttribute('href', '../../../../css/theme/ga-title.css')
} else {
document.getElementById('theme').setAttribute('href', '../../../../css/theme/ga.css');
}
});
</script>
</body>
</html>